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Abstract 

Three exciting new methods that address the accurate prediction of processes 

and properties of large molecular systems are discussed. The systematic fragmentation 

method (SFM) and the fragment molecular orbital (FMO) method both decompose a 

large molecular system (e.g., protein, liquid, zeolite) into small subunits (fragments) in 

very different ways that are both designed to retain the high accuracy of the chosen 

quantum mechanical level of theory while greatly reducing the demands on 

computational time and resources. Both of these methods are inherently scalable and are 

therefore eminently capable of taking advantage of massively parallel computer 

hardware. The effective fragment potential (EFP) method is a very sophisticated 

approach for the prediction on non-binded and intermolecular interactions. Therefore, the 

EFP method provides a way to further reduce the computational effort while retaining 

accuracy, by treating the far field interactions in place of the full electronic structure 

method. The performance of the methods is demonstrated using applications to several 

systems, including benzene dimer, small organic species, pieces of the alpha helix, water, 

and ionic liquids. 
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1.  Introduction  

The development of quantum chemistry methods in the 1980s and 1990s 

primarily focused on performing very accurate calculations on relatively small molecular 

systems.  The desire for accurate calculations on larger molecular species led to several 

formulations employing more efficient scaling, as well as additivity of basis set 

improvement and higher levels of electron correlation.  With regard to the latter, the 

Gaussian G(n)1 methods and the Weizmann W(n)2 methods are well known, along with 

several variants.3 

Simultaneous progress in the development of systematically improving atomic 

basis sets also provided a path toward systematic increases in accuracy. It was 

recognized4 that basis functions optimized for atomic correlation are also capable of 

describing molecular correlation effects.  Dunning and co-workers, for example, 

introduced a series of correlation consistent basis set sets5 based upon these conclusions, 

capable of accurately treating electron correlation with a compact set of primitive 

Gaussian functions. These basis sets can be used in a systematic way to obtain results 

approaching the complete basis set (CBS) limit.  However, increasingly large basis sets 

must be used, and the convergence tends to be slow.  Werner has recently introduced a 

series of F12 basis sets6 with improved convergence to the CBS limit. The high accuracy 

of these basis sets still comes at a significant computational cost, only feasible on 

relatively small systems.   

Chemical phenomena occur in condensed phases as well as in the gas phase, and 

many methods have been developed to treat the chemical environment7 and condensed 

phase phenomena.8 The desire to study ever larger systems led to combining quantum 
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mechanics (QM) with molecular mechanics (MM).  Several such combinations, known as 

QM/MM methods,9 have been developed since the initial work of Warshel,9a including 

multi-layer methods such as ONIOM,10 the Truhlar MCMM methods,11 and the effective 

fragment potential method (EFP)12-27 developed by Gordon and co-workers. The EFP 

method will be discussed in detail as a means to investigate non-bonded and 

intermolecular interactions via the automatic generation of a model potential that is 

derived from first principles. While hybrid methods have expanded the size of systems 

that are accessible to computations, the use of classical model potentials for the 

description of the environment can be a limiting factor, given that the electron density of 

the MM region and its impact on the QM region is not usually properly accounted for. 

 Alternative approaches to QM/MM methods are fragmentation methods, in which 

the system is broken (“fragmented”) into smaller pieces, each of which is considered 

essentially independently by a specified level of electronic structure theory.  

Fragmentation methods have the advantage that they are fully quantum mechanical in 

nature.  Several general fragmentation methods have been proposed, including molecular 

fragmentation with conjugated caps (MFCC),28 the elongation method,29 the molecular 

tailoring approach (MTA),30 the fast electron correlation method for molecular clusters 

developed by Hirata,31 Truhlar's electrostatically embedded many-body (EE-MB) 

expansion,32 multi-centered QM/QM methods,33 the systematic fragmentation method 

(SFM),34-38 and the fragment molecular orbital (FMO) method.39-45  The latter two 

methods, the SFM and the FMO methods, will be discussed in detail in this work.   

Instead of separating a system into two regions that are described by two very 

different levels of theory (QM and MM), fragmentation methods that divide a system into 



 4 

many smaller pieces, all of which are described by the same level of QM theory, have 

been proposed since the 1970s.46 By approaching a large system in this way, each smaller 

fragment can be treated using high levels of theory, providing the desired accuracy and 

an improvement in speed.  The earliest attempts46 constructed a set of fragments from 

common chemical groups (methyl, amino etc.) and used a selection of these fragments to 

build larger molecules.  More recent fragmentation methods28-45 begin with the larger 

molecule of interest and break the system into smaller fragments. 

 Fragmentation methods must also treat the environment (e.g., the remainder of the 

entire molecular system, or a solvent) around each fragment in some approximate, but 

realistic manner.  When fragmenting a molecule or a molecular system, each fragment no 

longer electronically “feels” the remainder of the initial system, unless one devises some 

way to retain the lost interactions.  This issue is addressed in the FMO method39 by 

performing each individual fragment calculation in a Coulomb “bath” represented by the 

electrostatic potential (ESP) of the entire system.  Further corrections to the FMO method 

are achieved by performing fully quantum mechanical two-fragment (dimer) and three-

fragment (trimer) calculations.  In the SFM method34 the effects of other fragments are 

incorporated by including overlapping fragments in such a manner that the double 

counting of atoms is accounted for, and non-bonded interactions are captured by 

employing classical potentials.12 Accurately capturing non-bonded effects is essential to 

maintaining kcal/mol accuracy compared to full ab initio studies. 

Traditional electronic structure methods, such as Hartree-Fock (HF), second order 

perturbation theory (MP2), and coupled cluster theory (e.g. CCSD(T)) have rapidly 

increasing resource requirements (e.g. time, memory, mass storage).  For example, the 
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HF, MP2 and CCSD(T) computer time requirements scale as O(n4), O(n5) and O(n7) 

respectively, where n measures the size of the system, e.g., in terms of the basis set size. 

Further, CCSD(T) memory requirements scale as O(n4), while disk requirements are 

difficult to uniquely define. One approach to addressing the computational scaling issue 

is to develop highly parallel algorithms. The development of parallel algorithms for 

electronic structure theory has been an active research area for ~20 years, and 

considerable progress has been achieved for increasingly complex QM methods.47 Such 

efforts may be referred to as fine-grained parallelism, in the sense that each energy or 

derivative evaluation itself takes advantage of many cores, usually in a distributed 

manner.48 In many fragmentation methods each fragment calculation can be performed 

essentially independently of all the others.  This leads to a multi-level parallelism, since 

the energy of each fragment can be obtained on a separate node (coarse-grained 

parallelism), while the fine-grained parallelism can be exploited within each node.49 If a 

fragmentation method is implemented to take advantage of this ability, large reductions 

in required computational resources can be achieved, facilitating calculations on, for 

example, condensed phases, proteins and surfaces.  Fragmentation approaches with 

multi-level parallelism also expand the capabilities of modest (e.g., single group or 

departmental) computer systems. 

 The present work focuses on three methods that have been designed to accurately 

treat large systems: EFP, SFM, and FMO. Benzene dimer is chosen as a representative 

example to illustrate the accuracy and efficiency of the EFP method, although several 

such studies have been carried out,50 as have EFP molecular dynamics simulations.51 The 

EFP approach has also been included as a means to capture accurate non-bonded 
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interactions within the SFM framework,39 as a replacement for simple electrostatics. It 

will be illustrated that the FMO method can be used to accurately describe a series of 

water clusters and ionic liquid systems. 

2.  Effective Fragment Potential (EFP) Method 

The generalized effective fragment potential (EFP2) method12 is a first-principles 

based model potential for the evaluation of intermolecular forces. This is a modification 

and extension of the original EFP1 water model13-17 to general systems. There are five 

EFP-EFP interaction terms in the EFP2 model potential, along with damping functions, 

each of which may be thought of as a truncated expansion:  

Coulombic (electrostatic), induction (polarization), exchange repulsion, dispersion (Van 

der Waals) , and charge transfer.   

E = Ecoul + Eind + Eexrep + Edisp + Ect  (1) 
 

In EFP1, the exchange repulsion, Eexrep, and charge transfer, Ect, components are folded 

into one term that contains fitted parameters, and there is no dispersion contribution. 

EFP1 has been integrated with HF,13 DFT,14 MCSCF,15 singly excited configuration 

interaction (CIS),16 and time-dependent density functional theory (TDDFT).17 The EFP2-

QM interface is still under development.18  

 The five terms in the EFP potential may be grouped into long range, (1/R)n distance 

dependent, or short range interactions, which decay exponentially.  The Coulombic, 

induction, and dispersion are long-range interactions, whereas the exchange repulsion and 

charge transfer are short range. EFP has been described in detail in several papers,12-17 

therefore only a brief overview of the terms will be presented below. 

 The Coulomb portion of the electrostatic interaction, ECoul, is obtained using the 
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Stone distributed multipolar analysis.19 This expansion is truncated at the octopole term. 

Atom centers and the bond midpoints are used as expansion points.  

 Induction (polarization), Eind, arises from the interaction of an induced dipole on 

one fragment with the permanent dipole on another fragment, expressed in terms of the 

dipole polarizability.  Truncating at the first (dipole) term in the polarizability expansion 

is viable, since the molecular polarizability tensor is expressed as a tensor sum of 

localized molecular orbital20 (LMO) polarizabilities. Therefore, the number of bonds and 

lone pairs in the system is equal to the number of polarizability points. This induction 

term is iterated to self-consistency, so it is able to capture some many-body effects. 

 Because the Coulomb and induction terms discussed above, as well as the 

dispersion interaction, are treated by classical approximations, the shorter range 

interactions that occur when quantum mechanical charge densities begin to overlap are 

not correctly captured. Therefore, each term is multiplied by a damping (screening) 

expression. The relative merits of several approaches to damping have recently been 

analyzed and discussed extensively.22 Classical Coulombic interactions become too 

repulsive at short range, and must be moderated by a screening term, as discussed in 

several previous papers.21,22 Conversely, the induction interaction becomes too attractive 

in the short-range regime, so a damping term is needed here as well. The unphysical 

behavior is avoided by augmenting the electrostatic multipoles with exponential damping 

functions of the form: 

    fdamp = 1 − exp(−αR)     (2) 

where parameters α are determined at each multipole expansion point by fitting the 

multipole damped potential to reproduce the Hartree–Fock potential. Damping terms in 
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the electrostatic energy are derived explicitly from the damped potential and the charge 

density. The damping procedure can be extended to higher-order electrostatic terms; that 

is, the charge– dipole, dipole–dipole, etc., interactions, and this is recommended.21 

Damping is also applied to the induction and dispersion energies.21,22 For induction, both 

exponential damping, as in Eq. (2) and Gaussian damping are effective, but the Gaussian 

damping seems to be more generally applicable and is therefore recommended.  

 The exchange repulsion interaction between two fragments is derived as an 

expansion in the intermolecular overlap.23 When this overlap expansion is expressed in 

terms of frozen LMOs on each fragment, the expansion can reliably be truncated at the 

quadratic term. This term does require each EFP to carry a basis set. Since the same basis 

set is used to generate the multipoles and the molecular polarizability tensor, EFP 

calculations are basis set dependent. The smallest recommended basis set is 6-

31++G(d,p)52 The dependence of the computational cost of an EFP calculation on the 

basis set appears primarily in the initial generation of the EFP. Therefore, one can employ 

much larger basis sets with minimal cost. The tests presented below on the SFM method 

use the 6-311++G(3df,2p)53 basis set. Since the basis set is used only to calculate overlap 

integrals, the computation is very fast and quite large basis sets are realistic.  

Dispersion interactions are often expressed by an inverse R expansion,  

Edisp CnR
n

n

      (3) 

where the coefficients Cn may be derived from the (imaginary) frequency dependent 

polarizabilities integrated over the entire frequency range.24 The first term in the 

expansion, n=6, corresponds to the induced dipole-induced dipole (Van der Waals) 

interactions. In the EFP2 method, this term is evaluated using the time-dependent HF 
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method. In addition the contribution of the n=8 term is estimated empirically. The C6 

coefficients are derived in terms of interactions between pairs of LMOs, one each on the 

two interacting fragments. Because the dispersion interaction should decrease to zero at 

short range, each dispersion term is multiplied by a damping function. Tang-Toennies 

damping25 is frequently used to damp dispersion. However, a new approach that is based 

on the overlap integrals between interacting fragments22 is free of fitted parameters and 

appears to be generally applicable. In future EFP applications, the overlap-based 

dispersion damping is recommended. 

 The charge transfer interaction is derived using a supermolecule approach, in which 

the occupied valence molecular orbitals on one fragment are allowed to interact with the 

virtual orbitals on another fragment. This interaction term leads to significant energy 

lowering in ab initio calculations on ionic or highly polar species when incomplete basis 

sets are employed. An approximate formula26 for the charge transfer interaction in the 

EFP2 method was derived and implemented using a second order perturbative treatment 

of the intermolecular interactions for a pair of molecules at the Hartree–Fock level of 

theory.  This approximate formula is expressed in terms of the canonical orbitals from a 

Hartree–Fock calculation of the isolated molecules and uses a multipolar expansion 

(through quadrupoles) of the molecular electrostatic potentials.  Orthonormality is 

enforced between the virtual orbitals of the other molecule and all of the orbitals of the 

considered molecule, so that the charge transfer is not contaminated with induction. This 

approximate formula has been implemented in the EFP method and gives charge transfer 

energies comparable to those obtained directly from Hartree Fock calculations.26 The 

analytic gradients of the charge transfer energy were also derived and implemented, 
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enabling efficient geometry optimization.27  

 It is useful to consider the relative costs of the five EFP interaction terms. Based on 

relatively small molecules and taking the cost of the Coulomb and dispersion terms to be 

one unit, the induction interaction would cost approximately two units, exchange 

repulsion would cost about five units, and charge transfer would cost ~10 units. For 

larger molecules, the relative costs of exchange repulsion and charge transfer will 

decrease since they will scale linearly in the large molecule limit. As always in 

computational chemistry there is a trade off between computational cost and accuracy.   

 While the EFP model is currently a rigid body model potential, analytic gradients 

for all terms have been derived and implemented, so full intermolecular geometry 

optimizations, Monte Carlo and molecular dynamics simulations50,51 can be performed. 

Because the method involves no empirically fitted parameters, an EFP for any system can 

be generated by a “makefp” run in the GAMESS
54 suite of programs. This automatic 

generation makes possible the use of the EFP method for treating intermolecular and non-

bonded interactions in fragmentation methods such as the SFM. 

2.1  The EFP Method as a Model for Non-Bonded Interactions 

 Benzene dimer is used here to illustrate the accuracy of EFP-EFP non-bonded 

interactions, with a focus on the π –π interactions between two benzene rings. These π –π 

interactions are largely driven by dispersion and are therefore difficult to account for 

accurately by most ab initio electronic structure methods.  Previous theoretical and 

experimental studies suggest that there are two minima on the benzene dimer potential 

energy surface55-62 the perpendicular T-shaped and parallel-slipped configurations, as 

shown in Figure 1.  A sandwich structure with two parallel benzene rings, also shown in 
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Figure 1, is a saddle point that connects two equivalent parallel slipped structures.  

Sherrill and co-workers calculated potential energy curves for these three structures56,57 

using second order Møller-Plesset perturbation theory (MP2) and coupled-cluster theory 

with single, double and perturbative triple excitations [CCSD(T)]63 A variety of 

augmented correlation consistent basis sets8 were used with both the MP2 and CCSD(T) 

levels of theory.  Additionally, they employed symmetry-adapted perturbation theory 

(SAPT)64 to decompose the benzene π –π interaction energy into electrostatic, dispersion, 

induction and exchange-repulsion components of the total interaction energy.  The 

binding energies, equilibrium separations and SAPT energy decomposition results from 

their work compare well with similar results obtained using the EFP method, as 

illustrated below.21a  

 For this work, the EFP for benzene was constructed with the 6-311++G(3df,2p) 

basis set,53 using the MP2/aug-cc-pVTZ64 benzene monomer geometry taken from Ref. 

57. The multipoles for benzene were generated using a numerical distributed multipolar 

analysis (DMA).19  The numerical DMA scheme is employed due to the instability and 

basis set dependence of the standard analytic DMA scheme, as well as the need for 

diffuse functions to properly describe the exchange-repulsion interactions within the EFP 

framework.  Higher order (up to quadrupoles) damping terms were also used to provide 

an accurate description of charge penetration through screening of the potentials.21 

 The EFP binding energies and corresponding inter-ring distances for the three 

benzene dimer structures are in good agreement with the analogous ab initio values 

obtained by Sherrill and co-workers (See Table 1). Relative to the full CCSD(T)/aug-cc-

pVQZ binding energies, the EFP method over-binds the sandwich dimer by 0.4 kcal/mol 
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and under-binds the T-shaped structure by 0.1 kcal/mol, while the equilibrium 

intermolecular separations are overestimated by approximately 0.1–0.2 Å.  In 

comparison, MP2 with the same basis set overestimates the binding energies by 1.7 

kcal/mol and 0.9 kcal/mol for the sandwich and T-shaped dimers, respectively, and 

underestimates the equilibrium distances by approximately 0.1–0.2 Å.  In fact, the MP2 

binding energies become successively worse compared with those predicted by CCSD(T) 

as the basis set is improved.  The EFP and CCSD(T) predicted binding energies and 

structures are in reasonable agreement with each other, whereas the agreement between 

MP2 and CCSD(T) is not as good. Table 1 summarizes the MP2, CCSD(T) and EFP total 

interaction energies of all three benzene dimer structures. A comparison of the total 

interaction energy decompositions obtained using both SAPT and the EFP method shows 

good agreement for the sandwich and T-shaped isomers (See Figures 2 and 3). 

Specifically, the error in the EFP method compared to SAPT for the dispersion, 

exchange-repulsion and polarization interactions is in the range 0.2-0.5 kcal/mol for these 

two isomers.21a  

 Highly accurate methods involve very demanding scaling of computational 

resources, such as time, memory and disk. For instance, a single point energy calculation 

in the 6-311++G(3df, 2p) basis set (660 basis functions) by MP2 requires 142 minutes of 

CPU  time on one IBM Power5 processor, whereas the analogous EFP  calculation 

requires only 0.4 seconds. The corresponding CCSD(T) calculation would be much more 

resource demanding than MP2. Taking into account the relatively good agreement of the 

EFP method results with the CCSD(T)/aug-cc-pVQZ results described above, this 

significant reduction in total computation time comes with a minimal loss of accuracy. 
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3.  The Systematic Fragmentation Method (SFM)  

 The systematic fragmentation method (SFM) is designed to permit a large 

molecular system, such as a protein, to be fragmented into smaller pieces in such a way 

that retains the accuracy of a full ab initio calculation at the same level of theory, while 

significantly decreasing the computational expense. By treating the smaller sub-systems 

with accurate levels of theory, the total energy and properties of the full system are 

obtained through addition and subtraction of the contributions from the overlapping sub-

systems or “groups.”  Many body effects are accounted for including the nearest neighbor 

of each group. Non-bonded interactions between groups are also accounted for. In the 

original formulation34 these non-bonded interactions were obtained using a classical 

electrostatic potential.  Recently, this non-bonded description has been improved through 

the use of the EFP method, providing a more accurate representation of the non-bonded 

interactions.38 

 Within the context of the SFM, a molecule can be thought of as a collection of 

functional groups.  For example, ethanol contains three functional groups (CH3, CH2, and 

OH) according to the SFM prescription.  To fragment the system into functional groups, 

single bonds are broken. This process splits a pair of bonding electrons; each of these 

electrons is assigned to one of the two resulting fragments. In order to avoid the resulting 

radical species, a hydrogen atom is used to “cap” the dangling bonds that are created by 

the fragmentation. The capping hydrogen points in the direction of the broken bond at a 

chemically reasonable distance.  By design, double or triple bonds are not broken, 

keeping the relevant atoms as a part of one functional group.  For example, ethanal would 

contain two functional groups (CH3 and CHO), keeping the carbon and oxygen atoms of 
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the carbonyl together in one group.  After the addition of the hydrogen caps, the ethanol 

groups would be CH4, CH4, and H2O, and the ethanal groups would be CH4 and CH2O.  

To gain a more quantitative understanding of the SFM, consider the general 

example of a linear molecule M containing K functional groups Gi : 

    M G1G2G3...Gk .                             (4) 

Each group Gi  is connected by single bonds to adjacent groups Gi 1  and Gi 1 . In order to 

separate the functional groups of M into smaller fragments, one can imagine breaking the 

Gi 1 Gi  single bond, then capping each new terminal atom with a hydrogen atom. This 

produces two new, smaller species, 

M1 G1G2G3...Gi 1Hi 1                    (5) 

 M2 HiGiGi 1...G k .                       (6) 

The internal geometries of M1  and M2  are preserved, except for the hydrogen atoms that 

have been used to cap the missing bond vector.  The total energy can then be written, 

without approximation, as: 

E(M ) E(M1) E(M2 ) dE1 ,      (7) 

where dE1  is the correction for the differential change in the energy caused by breaking a 

bond and adding two hydrogen caps.  This process can be repeated, since bonds can be 

broken at any point along the chain, decomposing the full system into many smaller 

fragments.  As the separation between the bond breaks is increased, the accuracy of the 

SFM will increase, since the larger fragments will give a more accurate description of the 

full system. The separation between broken bonds can be described as different “levels” 

of the SFM.  

 The SFM levels are defined as follows.34
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Consider the molecule M: 

 M G1G2G3G4G5G6G7G8                          (8) 

In the Level 1 SFM, two bonds separated by just one functional group are sequentially 

broken. The fragments initially created would, for example, be as follows: 

 M G1G2 G2G3G4G5G6G7G8 G2         (9) 

The G2 fragment is subtracted off to conserve the number of atoms. Subsequently, this 

process is repeated exhaustively on the G2G3G4G5G6G7G8 fragment until no fragment 

larger than 2 functional groups remains. In the end, the energy of M can be approximately 

decomposed into the simple sum of fragment energies for level 1 as follows:  

Ebonded

level 1(M ) E(G1G2 ) E(G2G3) E(G3G4 ) E(G4G5 ) E(G5G6 ) E(G6G7 ) E G7G8

E(G2 ) E(G3) E(G4 ) E(G5 ) E(G6 ) E(G7 )
 

(10) 

Similarly in the Level 2 SFM, bonds separated by two functional groups are sequentially 

broken with the energy of M being decomposed into the following expression: 

Elevel 2

bonded(M ) E(G1G2G3) E(G2G3G4 ) E(G3G4G5 ) E(G4G5G6 ) E(G5G6G7 ) E(G6G7G8 )

E(G2G3) E(G3G4 ) E(G4G5 ) E(G5G6 ) E(G6G7 )

(11) 

In the level 3 SFM, bonds separated by three functional groups are sequentially broken 

with the energy of M being decomposed into the following expression: 

Elevel 3

bonded(M ) E(G1G2G3G4 ) E(G2G3G4G5 ) E(G3G4G5G6 ) E(G4G5G6G7 ) E(G5G6G7G8 )

E(G2G3G4 ) E(G3G4G5 ) E(G4G5G6 ) E(G5G6G7 )

(12) 

It is important to note that in the limit of SFM, that is for level n, where n is the number 

of groups in the system, one would be left with the un-fragmented system. So the higher 

the SFM level employed, the larger the fragments and the closer one should get to the 
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energy of the exact un-fragmented system. 

 There are some limitations of the SFM.  First, as noted earlier, the SFM is unable to 

fragment conjugation in delocalized molecular systems.  The second, less obvious, 

limitation is that the SFM is unable to fragment six member rings using level 3 since the 

capping hydrogens would approach each other too closely and would therefore cause 

unphysical repulsive interactions. To avoid this, the ring must remain intact and is 

considered to be a functional group itself. Similarly, five member rings can only be 

fragmented at level 1; four and three member rings cannot be fragmented at all. These 

exceptions are referred to as the ring repair rule. 

3.1  Non-bonded interactions 

 The simplest approach to obtain the energy of the system of interest would be to 

calculate the energies of the individual hydrogen-capped fragments and sum them 

accordingly. The result obtained from this procedure would differ greatly from the 

analogous calculation on the full molecular system. This is because the (non-bonded) 

interactions among the separated fragments are unaccounted for. These non-bonded 

interactions are naturally incorporated into the full ab initio calculation. The non-bonded 

interactions are modeled within the SFM framework by using a modified many body 

expansion;37 this expansion relies on the assumption that bonded interactions are much 

stronger than non-bonded ones. 

3.2  Two-body interactions 

The interaction energy between two functional groups G1  and G2  is given by 

Enb

(1,1)[G1;G2 ] E(G1G2 ) E(G1) E(G2 ) ,                          (13) 

where E(G1G2 )  is the super-molecular energy of the two separated functional groups 



 17 

(placed in their positions in the original full molecule M) and E(G1),E(G2 )  are the 

corresponding (one-body) fragment energies. The total two-body non-bonded energy of 

the system contains the energies of all possible pairs of functional groups that are not 

described by the fragmentation of the bonded system in the definition of M. That is, all 

pairs of groups G1, G2 that are not contained in any one fragment.  

3.3  Three-body interactions 

The mutual interaction of three functional groups G1 , G2  and G3  is assumed to be 

negligible unless any two of the groups are bonded to each other. For example, if G3  is 

bonded directly to G2  then the three-body interaction energy would be: 

Enb

(1,2) G1;G2 ,G3 E G1G2G3 E G1 E G2G3

Enb

1,1
G1;G2 Enb

1,1
G1;G3           (14)

        
 

In other words, the three-body energy is simply the super-molecular energy, E(G1G2G3) , 

minus the one-body energies E(G1),E(G2G3)  and minus the two-body energies, 

Enb

(1,1)[G1;G2 ],Enb

(1,1)[G1;G3] . The total three-body energy consists of all combinations 

containing any group (G1 ) with any two bonded functional groups (G2 orG3 ), so long as 

G1 is itself not present in any bonded fragment with G2  or G3 . This general trend can be 

extended to four body interactions and beyond; however for the purposes of this work 

only three-body terms will be treated. 

 The total SFM energy of a system is simply the addition of the bonded and non-

bonded energies, 

ESFM
total Ebonded Enon-bonded ,                     (15) 

where Enon-bonded  includes all terms up to nth order from the modified many-body 
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approximation. For example, calculations employing 3rd order many body non-bonded 

energies would include the 2nd order many body non-bonded energies as well. 

3.4  SFM and EFP 

SFM molecular energy calculations corresponding to bonded level 3 including 

many body non-bonded interactions apparently provide, on average, the best balance 

between accuracy and computational effort.35 Although the non-bonded approximation is 

important for reliability, it also hinders computational performance by significantly 

increasing the number of ab initio terms. For example, moderately sized proteins (~3500 

residues) have on the order of 106 non-bonded interactions. Because there are so many 

non-bonded terms, these terms can dominate the calculation. It is therefore advantageous 

to employ approximate methods for those non-bonded interactions that are sufficiently 

distant that classical approximations might be valid. The simplest approach, using just 

electrostatic interactions, were used in the original SFM implementation.35 A more 

sophisticated approach, using effective fragment potentials (EFP), is described here. 

Compared to electrostatics, intermediate range (2.7-4.5Å) EFP interaction energies agree 

better with ab initio methods. This increases the number of non-bonded terms that can be 

calculated with model potentials.  

The determination of whether a non-bonded term is treated with EFP or ab initio 

methods is based on a user-defined cutoff related to the nearest atom-atom distance 

between fragments. The short-range (< 2.7Å) non-bonded terms use ab initio methods, 

while long-range ( 2.7Å) ones use EFP. The original electrostatic approach38 used a 

cutoff of 4.5Å. This shortened EFP cutoff comparatively reduces the number of ab initio 

non-bonded terms, thereby decreasing the computational expense.  
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Previously, Collins and Deev tested the SFM by calculating the isomerization 

energies of a set of organic molecules (12-44 heavy atoms) obtained from the Cambridge 

Structural Database.65 A subset of this set of isomerization energies is examined here.  

The energies that are obtained by employing the EFP/ab initio non-bonded approach are 

compared with both the fully ab initio energies (no SFM) and to the SFM in which all 

non-bonded terms are calculated with the same ab initio method that is used for the 

bonded terms. The ab initio calculations here employ both the Hartree-Fock (HF) and 

second order perturbation theory (MP2) levels with the 6-31G(d,p) basis set. Additional 

SFM tests are presented for a small set of alpha helices using the 6-31++G(d,p) basis set.  

The larger 6-311++G(3df,2p) basis set is employed for creating all EFPs used for non-

bonded interactions, since this basis set has been shown to produce reliable results and 

since the EFP basis set dependence does not significantly affect the computational cost 

relative to ab initio calculations. All of the SFM calculations presented here correspond 

to bonding level 3, including up to 3rd order many body non-bonded interactions.  All 

calculations are performed with the GAMESS54 electronic structure code. 

 Given in Table 2 are the errors in the isomerization energies. The corresponding 

structures are depicted in Scheme 1. It is evident that the two methods for treating the 

SFM non-bonded energy (EFP/ab initio and ab initio only) are in reasonable agreement 

with the fully ab initio (non SFM) energies, as the mean absolute error (MAE) in all 

cases is no more than 2.5 kcal/mol. Addition of the 3rd order non-bonded terms does not 

result in any improvement to the MAE. Interestingly, the MAE for the combined EFP/ab 

intio approach for the non-bonded terms are slightly smaller  (~0.1-0.5 kcal/mol) than 

those obtained when the non-bonded terms are evaluated with the ab initio method (HF 
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or MP2). For the 21 molecules of interest here, as also noted by Collins and Deev35, no 

improvement in the net CPU time is observed since the molecules themselves are small. 

Improvements in CPU timings are observed for larger molecular systems (>100 atoms), 

as discussed below. 

SFM isomer energies for the larger model alpha helices (ranging from 125-170 

atoms) are shown in Table 3, with the corresponding structures presented in Scheme 2.  

For these systems, adding the higher order non-bonded terms does improve the SFM 

performance. The MAE improves by ~1 kcal/mol when the 3rd order non-bonded terms 

are included. Here again, the SFM errors obtained when using the EFP/ab initio non-

bonded energies are similar (~1 kcal/mol smaller) to those obtained using only ab inito 

non-bonded terms. Table 4 compares the CPU times for using the EFP method for non-

bonded terms with those required for the ab initio-only SFM. The time needed to 

generate the EFP terms is also listed. This time becomes significant when the 3rd order 

many body terms are included. Further, since the EFP generation requires only 

calculations at the Hartree-Fock level of theory, the contribution of the EFP generation to 

the overall computation time will greatly decrease in importance when more accurate 

electronic structure methods are used. 

 Nonetheless, as shown in Table 4, employing EFP to treat a portion of the SFM 

3rd order non-bonded terms results in an overall decrease in CPU time by roughly a factor 

of two. Including only the 2nd order non-bonded EFP/ab initio terms gives energies in 

good agreement with the full un-fragmented energies (Table 3: MAE = 2.6 kcal/mol), but 

the gain in computational efficiency is small, ~5-15% less CPU time. The advantage of 

using the EFP/ab initio approach is clearly seen in Table 5, where the number of non-
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bonded terms that must be computed ab initio is compared for the EFP/ab initio and the 

electrostatic/ab initio methods. Since the EFP method is more effective at capturing 

interaction energies than electrostatics at close range, the EFP non-bonded cutoff can be 

set to the shorter distance of 2.7Å, instead of 4.5Å. This shorter cutoff value reduces the 

number of expensive ab initio non-bonded terms by up to 85-90%, while still retaining 

good accuracy. This increase in efficiency will be especially important when high levels 

of theory, such as MP2 or coupled cluster methods, are employed to treat large molecular 

systems.  A major advantage of the SFM (and other fragment-like methods) is that it 

enables very accurate calculations on large molecular systems that would otherwise be 

impossible. As noted above, since the EFP generation requires only Hartree-Fock level 

calculations, the contribution of the EFP generation to the overall computation time will 

greatly decrease in importance when more accurate electronic structure methods are used. 

4.  The Fragment Molecular Orbital (FMO) Method 

The FMO method39-45 relies upon the assumption that electron exchange and 

charge transfer are largely local phenomena in chemical systems.  By breaking a system 

into fragments and treating the long-range interactions in a system using only a Coulomb 

operator, there are significant reductions in computational expense.  In addition to this 

initial reduction in computational cost, the FMO method is further enhanced with the 

generalized distributed data interface (GDDI).49 The GDDI uses a two-level 

parallelization scheme, assigning individual fragment calculations to different groups, 

each group performing its fragment calculation in parallel. The FMO method has also 

been interfaced with the polarizable continuum model (PCM)66 and the effective 

fragment potential (EFP)84 for the inclusion of solvent effects.  There is also a multi-layer 
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FMO (MFMO) implementation67 that allows for the use of different wavefunction types 

for different fragments.  The combination of the long-range approximations to the system 

and the GDDI parallelization helps to facilitate the treatment of large molecular 

systems.45,68  

Creating fragments in the FMO method involves breaking bonds electrostatically, 

assigning two electrons of a covalent bond to one fragment and none to the other, with 

the fragment choice relying on the chemical intuition of the user.  To avoid the charged 

species created by such a fragmentation scheme, a proton from the electron deficient 

fragment is reassigned to the electron rich species, creating two neutral fragments 

(indicated by the “1” and “5” in Figure 4).  The “1” and “5” in the figure both carry sp3 

hybrid orbitals, to maintain the carbon character. The individual fragment (monomer) 

calculations are performed in the presence of a Coulomb “bath” that represents the 

electrostatic potential (ESP) of the system (Figure 5). Significant improvements69,70 to 

this description of the FMO method have been obtained by including many-body effects.  

Two-body (dimers; called FMO2) and three-body (trimers; called FMO3) interactions of 

the monomers are fully quantum, therefore all interactions are included in each 

calculation.  

 

To calculate the energy of a system within the FMO method, first the initial 

electron density distribution is calculated for each monomer in the Coulomb bath of the 

system.  The monomer Fock operators are constructed and the energy of each monomer 

is calculated.  Each of the monomer energies is iterated to self-consistency in this 

manner, leading to the convergence of the ESP.   
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The total energy of a chemical system, within the FMO approximation, can be written as;  

E EI
I

N

(EIJ
I J

N

EI EJ )  

{(EIJK
I J K

N

EI EJ EK ) (EIJ EI EJ )           (10) 

(EJK EJ EK ) (EKI EK EI )} ... 

where monomer (I), dimer (IJ) and trimer (IJK) energies are obtained using the standard 

SCF method. Despite the seeming simplicity of Eq. (10), the FMO method encapsulates 

the deeper ideas of properly handing many-body effects, as clarified in the diagrammatic 

treatment69 and the Green’s function formalism.73 This is a very important distinction 

between the FMO and other methods. The Fock equation; 

F
x
C
x
= S

x
C
x  x     x I, IJ, IJK                                                                            (11) 

F
x Hx

G
x                                                                                                        (12) 

is modified from the standard form with the addition of a term, V x , that represents the 

ESP to the one-electron Hamiltonian Hx . 



H x H x V x B i

h

i

i

h                                                                 (13) 

The modified Hamiltonian also contains the projection operator, B i

h

i

i

h , 

needed for division of basis functions along the fractioned bonds, where B is a constant 

chosen to be sufficiently large to remove the corresponding orbitals out of variational 

space (normally B=106 a.u.).  

The ESP of the system takes the form; 

V x (
K ( x)

uK vK )                                                                                           (14) 
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uK ( ZA / | r rA |)
A K

                                                                          (15) 

vK DK

K

( | )                                                                                       (16) 

where the first term uK  is the nuclear attraction contribution and the second term vK  is 

the two-electron contribution, both of which are calculated for each of the surrounding 

monomers K with electron density DK. 

4.1  FMO Approximations  

The formulation of the energy described above has limitations44,70,  such as the 

increasing cost of the two-electron term in the ESP.  To reduce this cost, different 

approximations can be used to treat the ESP by creating a cut-off value Rapp.  Outside this 

cut-off the two-electron terms of the ESP can be treated in a more approximate way.  

However, the foregoing energy formulation loses some accuracy with such 

approximations, because the balance among the approximations in different FMO terms 

may be lost.  For example, if there are three monomers I, J and L with some distance 

based approximation (Rapp) applied, and the relative distances are as illustrated in Figure 

6, then the electrostatic interaction of monomers I and L would be treated using the 

approximation, while the interaction of monomers J and L would be treated with the full 

ESP.  However, there would be an interaction of dimer IJ with monomer L without any 

approximations, (because L is close to IJ and J, but far from I).  This causes a loss of 

balance among some of the dimer energy terms in the expression 

(EIJ
I J

N

EI EJ )                                                                                                   (17) 
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for those dimers IJ in which some ESP contributions (i.e., those for fragment L) included 

in EI are treated using the approximation, but in others they are not.  There can be a great 

many dimer contributions to the energy in a single calculation, causing significant loss of 

accuracy in the energy of the full system.   

The issue described above requires a reformulation of the energy that is 

equivalent to Eq. (10), but more accurate if approximations to the ESP are used44. For 

FMO2,   

Emol EI
I

(EIJ
I J

EI EJ ) {Tr(DIJVIJ ) Tr
I J

(DIVI ) (DJVJ )}            

 
EI

I

(EIJ
I J

EI EJ ) Tr( DIJVIJ )
I J

                                                       (18) 

 
A similar expression has been derived for FMO3.78 

The new energy terms E x  are defined as the internal energies of the monomers and 

dimers with the ESP contributions subtracted out;  

Ex Ex Tr(Dx
V
x )      x I,J, IJ                                                                        (19) 

 
This is accomplished by contracting V

x with the electron density D
x
.  ΔD

x is the 

difference density matrix, defined as 

D
IJ

D
IJ
D
I
D
J d

II
d
IJ

d
JI
d
JJ

d
I
0

0 0

0 0

0 d
J

                   (20) 

 
where dII, dIJ, dJI and dJJ are blocks of DIJ, and dI (dJ) is simply equal to DI (DJ). This 

formulation makes it possible to calculate the total energy explicitly from only the dimer 

ESP V
IJ.  By subtracting the monomer and dimer ESPs in the energy expression, 

approximations can be applied to the monomers and dimers separately.  The dimer ESP 
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then directly contributes to the total energy, while the monomer ESP determines the 

monomer electron densities, only contributing to the total energy indirectly.   

Two different levels of approximation are currently used in the FMO method, 

enabled by equation (18).  For intermediate distances the Mulliken approximation71 to the 

two-electron integrals is used.  Equation (16) can then be rewritten as; 

vK (DKSK )
K

( | )                                                                                 (21) 

 
This approximation reduces the computational cost of the two-electron integrals by a 

factor of NB (number of basis functions).   

The fractional point charge approximation, using the Mulliken atomic populations 

of the monomers, is used for long distances. The two-electron term of equation (16) is 

then simplified as; 

vK (QA / | r rA |)
A K

                                                                              (22) 

 
reducing the computational cost of the two-electron integrals by another factor of NB. 
 

Inter-fragment interactions have a similar approximation that evaluates the 

electrostatic contribution to the energy using the monomer densities for far separated 

dimers, instead of calculating the dimer density itself.  This contribution is added to the 

dimer energy as 

EIJ EI EJ Tr(DIu1, I (J )) Tr(DJu1,J (I )) DI DJ (
JI

| )       (23) 

where u1, I (J ) and u1,J ( I )  are one-electron Coulomb potentials of the force exerted by 

fragment J on fragment I, and fragment I on fragment J, respectively. 

Other approximations of the same nature are implemented for correlated dimers 

and trimers, where the corresponding corrections for far separated pairs and triples of 
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fragments are neglected.72,74. Formal definitions and descriptions of the trimer 

interactions and cut-offs used in FMO3 have been described previously69,70 and will not 

be discussed here.  All of these approximations are based on a distance definition Rapp, 

defined as the minimum distance between atoms in n-mer I and monomer J divided by 

the sum of their van der Waals radii.   

There have been several new developments in the FMO theory that cannot be 

discussed in detail here. Nonetheless, it is useful to mention a few of them briefly. As an 

alternative to the original bond fragmentation scheme, in which the electron density 

describing the detached bonds is variationally optimized, a new scheme has been 

suggested in which this density is obtained for a model system and is kept frozen in 

fragment calculations75. This new scheme has been shown to work well for covalent 

crystals such as zeolites. The FMO method has also recently been implemented for the 

study of excited states76, using multi-configurational self-consistent field (MCSCF) 

theory, configuration interaction (CI), and time-dependent density functional theory 

(TDDFT). 

4.2  FMO2 and FMO3 Calculations on (H2O)32 Clusters 

The unusual characteristics of liquid water make it both very important to 

chemical processes and particularly difficult to model accurately.  The structure of small 

(H2O)n (n=6 through 20) clusters have recently been determined83 using coupled cluster 

theory; however, the ability to model water clusters larger than this at the same level of 

theory is nearly impossible.  The FMO method provides a way to model much larger 

water clusters at high levels of theory such as CCSD(T), while keeping the computational 

cost manageable. 
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In the present work, calculations of the energies of (H2O)32 water clusters are 

reported, using fully ab initio Møller-Plesset second order perturbation theory (MP2) as 

well as the MP2 implementation of the FMO method72,77. For these clusters a fragment 

(monomer) is defined as one water molecule for both FMO2 and FMO3 calculations.  

Initial structures were obtained from EFP Monte Carlo/Simulated Annealing (MC/SA) 

simulations followed by EFP optimizations of a representative set of structures.  The 

MC/SA method with local minimization was used to sample the configuration space.  For 

each global minimum found, the number of structures sampled was on the order of 

500,000 – 1,100,000.  The number of steps taken for each temperature was varied (100, 

500, 1000, 10,000), along with changing the number of steps between local 

minimizations (10, 100, 1,000). The number of fragments moved per step was also varied 

between one and five. The starting temperature for the simulated annealing varied from 

500 to 20,000 K and the final temperature was kept at 300 K.  This selection of isomers 

(the lowest energy structure is shown in Figure 7) was used to investigate the accuracy of 

the FMO method by comparing both absolute and relative energies.    

Average errors for the FMO2-MP2 calculations (Table 6) using the 6-31++G(d,p) 

basis set are very consistent, around 12 kcal/mol.  The FMO3-MP2 results illustrate the 

importance of three-body interactions in water clusters,78,79 again with very consistent 

errors of ~2-3 kcal/mol (Table 6).  Comparing results between basis sets in Table 6, when 

the basis set size is increased to 6-311++G(3df,2p), the FMO2 errors double to ~24-28 

kcal/mol, while the FMO3 errors are cut in half to ~1 kcal/mol.  This increase in errors 

with an increased basis set size for the two-body FMO method could be due to an 

increased importance of three-body contributions when the better basis set is used.  The 



 29 

larger basis set also provides a better description of three-body interactions, making the 

lack of these interactions in FMO2 even more detrimental. 

Despite the large absolute errors present in the FMO2 description of water 

clusters, the relative energetics of the different isomers is captured quite well.  On 

average, the FMO2 relative energies are in agreement with full ab initio results to within 

~1-2 kcal/mol with both basis sets, shown in Table 7.  The error increases for FMO2 as 

the relative energy of the isomers increases, showing an increased importance of three 

body contributions with higher energy isomers.  For both basis sets, the FMO3 results are 

within ~0.5 kcal/mol or less for all isomers as shown in Table 7, effectively removing the 

error from the two body description used in FMO2.   

4.3  The FMO Method Applied to Ionic Liquids 

 Previous studies of ionic liquids80,81,82  have focused on the decomposition of ion 

pairs (Figure 8), providing insight into the chemistry of their ignition as high energy 

fuels.  The focus of this paper, however, will be to accurately describe larger systems 

beyond single anion-cation pairs.  Recent work by Li et. al.83 has provided an accurate 

structure of two ion pairs (two cations and two anions), providing a greater understanding 

of the molecular structure and intermolecular interactions.  The same system will be 

modeled here, along with systems of three ion pairs to illustrate the effectiveness of the 

FMO method in accurately describing complex molecular clusters, with the goal of 

modeling much larger systems in the future. 

 Two ionic liquid systems, 1-H,4-H-1,2,4-triazolium dinitramide and 1-amino, 4-

H-1,2,4-triazolium dinitramide (Figure 8), were studied using both ab initio Møller-

Plesset second order perturbation theory (MP2) and the MP2 implementation of the FMO 
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method72,77 with one ion chosen as an FMO fragment or monomer.  Structures composed 

of two cations and two anions (tetramers), shown in Figures 9 and 11, and larger clusters 

of three cations and three anions (hexamers), shown in Figures 10 and 12, were optimized 

at the MP2/6-31+G(d) level of theory.  FMO2-MP2 and FMO3-MP2 single point energy 

calculations were then performed for comparison with the fully ab initio results. Mulliken 

charges on each cation and anion were also compared to ensure that the pronounced 

charge separation present in ionic liquids80,81,82 is captured using the FMO method.   

  Comparing the energies from FMO2 and FMO3, it can be seen immediately that 

the FMO method captures the total energy very well, within 2 kcal/mol in the worst case 

(Table 8).  For the tetramers, both FMO2 and FMO3 are in good agreement; the FMO2 

errors are less than 1 kcal/mol relative to the fully ab initio results.  For the hexamers, the 

FMO2 errors are less than 2 kcal/mol, illustrating that FMO3 is not required to achieve 

the desired level of accuracy for these particular ionic liquid systems.  Whether this trend 

persists as system size grows beyond three ion pairs, or for other ion pairs, must be tested 

further.  

 As shown in previous studies80,81,82, ionic liquid ion pairs have a definite 

separation of charge (approximately +1 on the cations, -1 on the anions) at equilibrium 

geometries.  This charge separation is also observed for tetramers, as shown in Table 9, 

and the charge separation between cations and anions is still present up to hexamer 

structures.  FMO2 captures the qualitative charge separation quite well, however, the 

magnitude of charge present on both cations and anions is slightly overestimated by 

FMO2 for both tetramer structures (Table 9).  However as the system size increases to 

three ion pairs, the difference between FMO2, FMO3 and ab initio results becomes 
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minimal.  Future work using larger basis sets will help determine if FMO2 is accurate 

enough to describe larger ionic liquid clusters or if FMO3 will be required.   

 Another consideration for larger molecular systems is the computer time required.  

To illustrate the overall effectiveness of the FMO method in both providing accurate 

results and reducing computational requirements, timings were performed for the ionic 

liquid systems described above.  Due to the fact that FMO2 is in good agreement with the 

ab initio results, only timings for FMO2 will be shown.  However, it is noted here that 

because the tetramers and hexamers examined here are small, the FMO3 timings for these 

systems do no exhibit any time savings relative to the full MP2 calculations. The benefit 

of using FMO3 is only seen with larger systems73. 

 Timings were performed on a Cray XT4 supercomputer using AMD Opeteron64 

processors running at 2.1 GHz, located at the U.S. Army Engineer Research and 

Development Center (ERDC) in Vicksburg, Mississippi.  Single point Møller-Plesset 

second order perturbation theory (MP2) energy calculations were performed using 8, 16 

and 32 processors with both FMO2 and MP2 using the 6-31+G(d) basis set.  As shown in 

Table 10, FMO2 requires approximately half the computer time of a full MP2 calculation 

on the tetramers.  With the increase in available processors, the overall time requirements 

are cut in half for both FMO2 and MP2, showing good scalability for both methods.  

With an increase in system size from ionic liquid tetramers to hexamers, the computer 

time required for a fully ab initio calculation increases more than 6 fold, while the FMO2 

requirement only doubles. So, the FMO2 cost savings relative to full MP2 is much 

greater than that observed for the tetramers. Again, scalability for both methods is very 
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good for the hexamers, cutting the computational time in half when doubling the number 

of available CPUs.  

It is apparent that as the system size increases to larger ionic liquid clusters, or as 

the basis set size increases (or both) the computational requirements for a fully ab initio 

calculation will rapidly and increasingly exceed those for FMO2.  It may be that as the 

system size increases, the importance of three-body contributions to the interaction 

energy will also increase, requiring the use of FMO3.  Future work will determine the 

importance of three-body terms in ionic liquid systems, as well as the ability of the FMO 

method to describe larger molecular clusters.   

5.  Summary and Conclusions 

Obtaining chemical accuracy (1 kcal/mol) using model chemistries has been a 

major focus of quantum chemistry research for the last quarter of a century. The desire to 

study larger systems in order to capture novel chemical phenomena (e.g. solvent effects, 

surface science, enzyme and heterogeneous catalysis and polymerization phenomena), 

including the kinetics and dynamics of such processes, often requires very accurate 

predictions of potential energy surfaces for subsequent predictions to be even 

qualitatively correct. The computational effort of traditional methods such as Hartree-

Fock (HF), density functional theory (DFT), 2nd order perturbation theory (MP2), and 

coupled cluster theory with perturbative triples (CCSD(T)) scale as O(n4), O(n4), O(n5), 

and O(n7), respectively, where n represents the size of the system, e.g., the size of the 

basis set. In practice, this limits the sizes of systems that can be studied with HF/DFT, 

MP2 and CCSD(T) to approximately a few hundred, one hundred, and twenty non-

hydrogen atoms, respectively. By developing highly parallel algorithms, the goal of using 
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sophisticated electronic structure methods to investigate large molecular problems 

becomes more feasible, especially if one has access to massively parallel computing 

hardware.  However, scalability beyond hundreds to a few thousand processors is 

generally a serious bottleneck for correlated electronic structure methods. Consequently, 

parallel computing is not the sole solution to enabling accurate calculations on extended 

molecular systems; other approaches are needed. If one is interested in performing long-

time simulations at reliable levels of theory, the situation is only exacerbated.  

Pioneering work by Warshel9a and others9 introduced hybrid methods that employ 

both quantum mechanics (QM) and molecular mechanics (MM), leading to the now 

ubiquitous QM/MM approach. Importantly, the QM/MM approach is quite general, so it 

can be employed with any level of QM, including the fragmentation methods that have 

been the primary focus of the present work.  Modern fragmentation methods have their 

roots in ideas from Murrel (1955)46a and Christoffersen (1971).46b  More recently 

developed fragmentation methods, such as the fragment molecular orbital (FMO) method 

and the systematic fragmentation method (SFM), are now becoming capable of achieving 

chemical accuracy for extended molecular systems. 

The effective fragment potential (EFP)12 method has been developed to model 

non-bonded, intermolecular interactions. There are two related implementation of the 

EFP method: The original method, called EFP1, was developed specifically to study 

aqueous solvent effects on chemical processes.  The more recently developed EFP2 

method is completely general, in the sense that an EFP2 is generated automatically by a 

simple GAMESS run, so it contains no empirically fitted parameters. The Coulomb and 

induction terms are common to EFP1 and EFP2, but the remaining terms in EFP2 are 
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derived from first principles. Once an EFP2 has been built for a specific system, the 

evaluation of EFP-EFP interactions requires a small fraction of the computational cost 

compared to the fully QM calculation. The EFP computational effort scales in the range 

of quadratic to linear with an increasing number of fragments. EFP1/MP2 achieves an 

accuracy of ~1 kcal/mol for the relative energies of six-water clusters compared to 

CCSD(T)/aug-cc-pVTZ.47b For benzene dimer binding energies, EFP2 achieves an 

accuracy of ~1 kcal/mol relative to CCSD(T)/aug-cc-pVTZ results.  The EFP1 method 

has been interfaced with the QM methods HF,13 DFT,14 MCSCF,15 singly excited 

configuration interaction (CIS),16 and time-dependent density functional theory 

(TDDFT)17 within the GAMESS suite, so EFP1 is a fully QM/MM method. The EFP2-

QM integration is currently under development.18  

The SFM fragments a molecule based on the number of single bonds in each 

fragment, while considering the environmental effects of distant parts of the system via a 

many body expansion of the interactions not captured by the internal energies of the 

fragments.  This framework allows the SFM to be widely applicable with a simple user 

interface, which has been integrated into the GAMESS suite. The SFM has been used to 

study small and medium sized organic molecules35, as well as crystals.37 In this paper, it 

was demonstrated that the SFM, when using EFPs for the non-bonded interactions, has a 

mean averaged error of 1.8 kcal/mol for several -helical isomers at the HF/6-

31++G(d,p) level of theory. The SFM is independent of the ab initio methods used in 

calculations of the fragments, thereby facilitating highly accurate energies and relative 

energies with nearly linear scaling as the size of the system is increased. The time 

requirements for the EFP part of a SFM calculation, when EFPs are used for the non-
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bonded interactions, are determined by the cost of an initial HF single point calculation. 

Therefore, the EFP fraction of the overall computer time requirements decreases rapidly 

as the level of ab initio theory increases (e.g., from HF to MP2 to CCSD(T)). 

The FMO method treats each fragment (monomer, dimer, etc.) in a Coulomb bath 

that represents the remainder of the full system. The energy of each monomer is iterated 

to self-consistency within this Coulomb bath. The FMO method is very flexible with 

regard to the definition of fragments (i.e., monomers), the assignments of distance cutoff 

parameters, and the level of many-body effects (i.e., dimer, trimer, etc.) to be included in 

the calculation. Combined with the avoidance of capping procedures, this facilitates the 

study of a wide variety of systems including clusters, zeolites, and proteins, and the 

ability to balance accuracy and computational efficiency. Within the GAMESS suite, the 

FMO method has been interfaced with the polarizable continuum method and the EFP 

method for studies of solvent effects on chemical processes. Each monomer in a 

molecular system of interest can be treated by most traditional electronic structure 

methods. In the present work, the FMO method has been shown to achieve accuracy 

within 1 kcal/mol for both ionic liquid systems and water clusters. 

 The EFP method provides a systematically improvable description of non-bonded 

interactions, while the FMO method and the SFM facilitate the description of large 

molecular systems with high levels of accuracy. The interface of the two fragmentation 

methods for internal and near-field ab initio calculations with the EFP method for non-

bonded moderate and far-field interactions and for solvent effects provides a powerful 

and computationally effective combination. Additionally, the ability of these methods to 

take advantage of the standard theoretical electronic structure framework allows their 
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capabilities to move forward with new advances in electron correlation, wavefunction 

description and basis set development. 

 An important advantage of the FMO and SFM approaches described here is their 

ability to take great advantage of massively parallel computers. Because the energy of 

each fragment can be computed essentially independently, each fragment calculation can 

be determined on a separate compute node. Further, because most of the algorithms used 

in GAMESS for electronic structure functionalities are themselves highly scalable, the 

fragment-based calculations can take advantage of multi-level parallelism. This 

capability, which is enhanced by middleware developments like the generalized 

distributed data interface (GDDI), bodes well for the implementation of algorithms for 

“petascale” computers that are expected to come on line within the next 2-3 years.  

Simultaneous advancements in new approaches like the fragmentation methods discussed 

here, novel parallel algorithms, ab initio theory, and novel approaches in hardware 

development are all required if one is to successfully address the grand challenge 

problems in the chemical sciences, biological sciences and materials science and 

engineering. 
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Table 1. Binding energies (kcal/mol) and equilibrium separations R (Å) of benzene 
dimer structures.  

Method Basis set Sandwich  T-Shaped  Parallel-displaced 
R Energy  R Energy  R1 R2 Energy 

MP2a aug-cc-pVDZb 3.8 -2.83  5.0 -3.00  3.4 1.6 -4.12 
 aug-cc-pVTZ 3.7 -3.25  4.9 -3.44  3.4 1.6 -4.65 
 aug-cc-pVQZb 3.7 -3.35  4.9 -3.48  3.4 1.6 -4.73 

CCSD(T)a aug-cc-pVDZb 4.0 -1.33  5.1 -2.24  3.6 1.8 -2.22 
 aug-cc-pVQZb 3.9 -1.70  5.0 -2.61  3.6 1.6 -2.63 

EFP 6-311++G(3df,2p) 4.0 -2.11  5.2 -2.50  3.8 1.2 -2.34 

a Reference 56  
b Basis sets as described in Ref. 56 
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Table 2.  Mean absolute errors of isomerization energies (kcal/mol) calculated by SFM, 
relative to fully ab initio (no SFM) energies. The non-bonded terms use the combined 
EFP/ab initio approximation (cutoff 2.7Å). Given in parentheses is SFM with the non-
bonded term fully ab initio (no approximation). 

  2nd Order Many Body 3rd Order Many Body 
 6-31G(d,p) 6-31G(d,p) 

Isomer HF kcal/mol MP2 kcal/mol HF kcal/mol MP2 kcal/mol 
ODETAS-AHALUQ 0.0   (0.5) 0.6   (0.1) 0.6   (0.2) 0.4   (0.3) 

ODETAS01-AHALUQ 0.5   (1.2) 0.0   (0.7) 0.9   (0.4) 0.0   (0.1) 
BAZGEP-BAZGIT 0.4   (0.6) 0.4   (0.2) 0.2   (0.5) 0.3   (0.3) 
BELDIF-NOTGAE 2.6   (2.6) 4.6   (5.1) 2.6   (2.4) 4.6   (4.9) 

FDOURD01-BOFWIC 0.5   (0.7) 0.2   (0.9) 0.1   (0.2) 0.5   (1.6) 
CONBAI-FDMUPD10 0.7   (0.3) 1.1   (2.4) 3.5   (4.2) 2.9   (5.4) 

IDUFES-IDUFAO 1.6   (2.1) 3.1   (5.3) 0.7   (0.2) 1.8   (1.1) 
LEDRAN-LEDRER 1.0   (0.8) 1.0   (2.6) 1.7   (1.9) 1.6   (2.8) 
LEDRIV-LEDRER 1.9   (1.5) 0.3   (0.0) 0.5   (0.4) 1.4   (1.0) 

TAXYIA-MOGQOO 1.3   (0.4) 11.1 (8.4) 0.0   (1.2) 9.7   (6.8) 
TAXYOG-MOGQOO 1.6   (2.1) 1.1   (3.7) 2.0   (2.6) 1.5   (4.2) 

WINXIA-XEXXIH 0.3   (0.3) 0.1   (0.1) 0.3   (0.3) 0.1   (0.1) 
     

MAE 1.0   (1.1) 2.0   (2.5) 1.1   (1.2) 2.1   (2.4) 
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Table 3. Absolute errors in isomerization energies (kcal/mol) at HF/6-31++G(d,p) for 
alpha helixes, relative to fully ab initio (no SFM). The non-bonded terms use the 
combined EFP/ab initio approximation (cutoff 2.7Å) or ab initio (given in parentheses).  

  2nd Order 3rd Order 
 HF/6-31++G(d,p) HF/6-31++G(d,p) 

Isomer HF kcal/mol HF kcal/mol 
MAQWUW_1-MAQWUW_2 2.7  (1.1) 1.7  (0.2) 

WUYCUO-WUYDAV 5.7  (5.8) 3.9  (6.1) 
WUYCUO-WUYDEX 0.9  (2.5) 0.1  (3.1) 
YETPES_1-YETPES_2 1.1  (5.3) 0.2  (1.0) 

     
MAE 2.6  (3.7) 1.5  (2.6) 
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Table 4. Net CPU times (minutes) for the SFM HF/6-31++G(d,p) on a single core of a 
Xeon 2.66Ghz quad core Cloverton node, with 16 GB  RAM. Net times include the time 
needed for EFP generation. The EFP generation time is given in parentheses.  The total 
number of non-bonded terms is also listed. The heading EFP indicates the use of EFP for 
the non-bonded terms. 
 2nd Order Non-bonded 3rd Order Non-bonded 

Isomer 
# non-bonded 

terms EFP  No EFP 
# non-bonded 

terms EFP No EFP 
MAQWUW_1 1113 128  (25) 144 3159 329  (191) 559 
MAQWUW_2 1113 128  (26) 140 3155 333  (194) 562 

WUYCUO 1752 155  (33) 182 5049 413  (214) 853 
WUYDAV 1754 162  (33) 188 5059 439  (227) 909 
WUYDEX 1754 150  (32) 180 5052 419  (217) 880 
YETPES_1 932 115  (24) 122 2623 305  (170) 490 
YETPES_2 929 117  (25) 126 2618 299  (166) 497 
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Table 5. Comparison of the number of ab initio non-bonded terms needed for non-
bonded EFP/ab initio cutoffs set to 2.7 and 4.5Å at the 2nd and 3rd order many body 
approximation. 
 

  2nd Order Many Body 3rd Order Many Body 
  2.7Å (terms) 4.5Å (terms) 2.7Å (terms) 4.5Å (terms) 

MAQWUW_1 34 233 113 729 
MAQWUW_2 34 224 106 693 

WUYCUO 35 318 108 1054 
WUYDAV 40 327 130 1075 
WUYDEX 36 321 118 1055 
YETPES_1 29 225 79 709 
YETPES_2 25 225 70 708 
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Table 6.  Absolute errors in the FMO2-MP2 and FMO3-MP2 total energy of the 32 water 
clusters selected from EFP Monte Carlo/Simulated Annealing simulations.  Isomer names 
are only used to distinguish isomers from one another. 
 

  Absolute Error (kcal/mol)     
 6-31++G(d,p) 6-311++G(3df,2p) 
Isomera FMO2-MP2 FMO3-MP2 FMO2-MP2 FMO3-MP2 

32_1 11.8 2.2 26.8 1.0 
32_2 12.4 2.5 28.0 1.2 
32_3 11.4 1.9 27.3 1.3 
32ab 12.5 2.5 27.4 1.3 
32ad 11.8 2.5 27.3 1.2 
32h 12.3 2.5 27.3 1.3 
32o 12.5 2.5 25.8 1.0 
32z 12.4 2.3 24.6 1.2 

aOne water molecule chosen as a monomer 
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Table 7.  Relative FMO2-MP2 and FMO3-MP2 energies of the 32 water clusters selected 
from EFP Monte Carlo/Simulated Annealing simulations.  Isomer names are only used to 
distinguish isomers from one another. 
 

  Relative Energies (kcal/mol)       
 6-31++G(d,p)  6-311++G(3df,2p)  
Isomera FMO2-MP2 FMO3-MP2 ab initio FMO2-MP2 FMO3-MP2 ab initio 

32_1 0.0 0.0 0.0 0.0 0.0 0.0 
32z 1.3 0.5 0.2 0.7 0.2 0.1 

32_2 1.4 1.2 0.9 1.1 0.8 0.5 
32ab 1.5 1.2 0.9 1.1 0.9 0.6 
32h 1.4 1.2 0.9 1.4 1.0 0.7 
32o 1.7 1.5 1.2 1.7 1.3 1.0 
32ad 4.9 6.0 6.0 5.7 6.1 5.8 
32_3 11.8 14.3 14.1 14.0 14.1 14.4 

aOne water molecule chosen as a monomer 
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Table 8. FMO2 errors (kcal/mol) for tetramer and hexamer ionic liquid clusters. 
 

    Absolute Error (kcal/mol) 
  6-31+G(d)   
Tetramers   FMO2-MP2 FMO3-MP2 
1-H,4-H-1,2,4-triazolium dinitramide  0.06 0.02 
1-amino,4-H-1,2,4-triazolium dinitramide 0.69 0.03 
Hexamers       
1-H,4-H-1,2,4-triazolium dinitramide  0.32 0.07 
1-amino,4-H-1,2,4-triazolium dinitramide 1.35 0.27 
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Table 9. Comparison of Mulliken charges for all ionic liquid systems investigated. 

        Mulliken Charges   
    6-31+G(d)     
Tetramers       FMO2-MP2 FMO3-MP2 MP2 
1-H,4-H-1,2,4-triazolium dinitramide  Cation 1 0.82 0.77 0.74 
   Cation 2 0.82 0.77 0.74 
   Anion 1 -0.82 -0.77 -0.74 
   Anion 2 -0.82 -0.77 -0.74 
       
1-amino,4-H-1,2,4-triazolium dinitramide Cation 1 0.87 0.84 0.82 
   Cation 2 0.82 0.82 0.82 
   Anion 1 -0.89 -0.94 -0.93 
   Anion 2 -0.80 -0.74 -0.71 
Hexamers             
1-H,4-H-1,2,4-triazolium dinitramide  Cation 1 0.86 0.82 0.79 
   Cation 2 0.88 0.85 0.80 
   Cation 3 0.94 0.91 0.87 
   Anion 1 -0.83 -0.79 -0.77 
   Anion 2 -0.95 -0.92 -0.88 
   Anion 3 -0.90 -0.86 -0.81 
       
1-amino,4-H-1,2,4-triazolium dinitramide Cation 1 0.84 0.84 0.88 
   Cation 2 0.79 0.78 0.76 
   Cation 3 0.90 0.89 0.89 
   Anion 1 -0.81 -0.92 -0.95 
   Anion 2 -0.83 -0.85 -0.83 
      Anion 3 -0.88 -0.74 -0.75 
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Table 10. Timings for ionic liquid clusters performed on a Cray XT4 with 2.1GHz AMD 
Opteron64 processors.  Each node contains a 4 core CPU and 8 GB of RAM. 
 

      Timing (minutes) 
   6-31+G(d)  
Tetramer   # CPUs FMO2-MP2 MP2 
1-amino,4-H-1,2,4-triazolium dinitramide 8 12.2 28.4 
  16 6.4 14.7 
  32 3.5 7.3 
Hexamer         
1-amino,4-H-1,2,4-triazolium dinitramide 8 24.0 172.1 
  16 12.5 83.9 
    32 6.8 42.8 

 



 54 

Scheme 1. Depiction of isomers used in Table 2. Structures are from the Cambridge 
Structural Database (CSD).  Non-hydrogen atoms have been labeled. 
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Scheme 2. Depiction of alpha helix isomers used in Table 4. Structures are from the 
Cambridge Structural Database (CSD).  Non-hydrogen atoms have been labeled. 
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FIGURE CAPTIONS 

 

Figure 1.  Sandwich, T-shaped, and parallel-displaced configurations of the benzene 
dimer.  
 
Figure 2. Comparison of SAPT and EFP interaction energy (kcal/mol) decomposition as 
a function of the seperation (Å) of benzene dimers in the sandwhich configuration.  
 
Figure 3. Comparison of SAPT and EFP interaction energy (kcal/mol) decomposition as 
a function of the seperation R (Å) of benzene dimers in the T-shaped configuration. 
 
Figure 4. Electrostatic fractioning of bonds. 

Figure 5. Monomer calculation performed in the ESP of the full system. 

Figure 6. Illustration of FMO approximations applied to three monomers I, J, L (left) and  
as applied to dimer IJ and monomer L (right). 
 
Figure 7. Lowest energy cluster of 32 water molecules obtained from EFP Monte 
Carlo/Simulated Annealing simulations.   
 
Figure 8. Ion pairs of 1-amino,4-H-1,2,4-triazolium dinitramide (top) and 1-H,4-H-1,2,4-
triazolium dinitramide (bottom). 
 
Figure 9. Lowest energy structure of 1-amino,4-H-1,2,4-triazolium dinitramide tetramer 
obtained from an ab initio MP2/6-31+G(d) optimization.     
 
Figure 10. Lowest energy structure of 1-amino,4-H-1,2,4-triazolium dinitramide 
hexamer obtained from an ab initio MP2/6-31+G(d) optimization.   
 
Figure 11. Lowest energy structure of 1-H,4-H-1,2,4-triazolium dinitramide tetramer 
obtained from an ab initio MP2/6-31+G(d) optimization.   
 
Figure 12. Lowest energy structure of 1-H,4-H-1,2,4-triazolium dinitramide hexamer 
obtained from an ab initio MP2/6-31+G(d) optimization.   
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